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SUMMARY

A partial least squares treatment of multivariate data

related through a complex model allows one to evaluate the

interactions between large numbers of features at once.

Results where the model is of water sources flowing together,

each block composed of water quality data, allow the influence

of the various sources to be evaluated with respect to their

importance on the resulting flow downstream.
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When the goal of a s tud y is to unde rs tand the inter-

re la t ionsh ip among several parts of a complex system ,

st a t i s t i ca l  pr oced u res a r e often employed to analyse features

f r om sets o f samp les co llectively used to r epr ese n t eac h pa r t .

All too of te n , the number of fea tures  and/ or  par t s  is larger

than the number of samples and many multivariate statistical

procedures fa i l  to be useful . A simp le ex ample is the case

whe re one set of independent fea tures  is to be related to onl y

one dependent  f ea tu re  by mu l t i p le regression anal ysis ,

represented as Model I in Figure 1. The calculation can give a

pe r fec t  but  possibly meaningless f i t  if the number of features

is gr eate r than the n umbe r of samples. Fo r the establishment

of a predictive model this problem is normall y ov er come by the

use o f stepwise r egression analysis. However , in thi s anal ysis

the regression coef f ic ients  are uninformative wi th respect to

our understanding of the model and tu e  results provide no

information about the u t i l i ty  of the omitted fea tu res , wh ich

may be onl y a litt le less inf o rmative than those chosen to

provide the best f i t .

Consider the case where multiple blocks of data , each

block consisting of several features obtained over several

samples , are to be interrelated by a complex scheme or path

model . When onl y one block of fea tures  is to be related to a
second block of features , shown as Model II in Figure 1, a 
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canonical correlation analysis [1) or t a r g e t — t r a n s f o r m a t i o n

analysis [2] can be carried out . For more than two blocks of

data various multid imensional scaling techniques have been

developed (3) whIch relate blocks of features along axes

preserving the maximum amount of all interb iock information at

once. However , when not all  in terconnect ions  between blocks

are desired or relevant , more flexible methodology is required .

This new methodology, herein called the PLS (Partial Least

Squares) approach to Path Modelling using Latent Variables, has

recently been developed by H. ~1old (4—8]. This important new

tool allows blocks of f ea tu re s  to be represented by

unobserveables or “latent” variables indirectly observed . The

latent  variables are then related to one another by a path or

interconnect ion schene predetermined by the user.  The latent

variables are found by an i t e ra t ive  procedure involving simple

and mul t i p le regression analysis so that they simultaneously

and optimally (in the PLS sense) represent the measured

fea tu res  and provide the best fit to the pa th model. The

method is so general that principal component analysis,

multiple regression analysis, and canonical correlation

analysis are included as special cases. The first app lication

of this method to the physical sciences, an analysis of water

chemistry measurements to assess tile environmental impact of

mine spoils drainage , is reported here.

~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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In order to understand the impac t of coal mining on local

water quality, R. Skogerboe et al [9) monitored several water

quality parameters at numerous sites on Trout Creek in

Colorado. Data taken at monthly intervals from October 1973 to

July 1976 were provided by Skogerboe [10) for this study. Five

sites best characterized the environmental impact and were

selected for our present analysis. Site 1 is upstream from

runoff influenced by spoils of the Midway Edna Coal Mine , which

is adjacent to the stream . Sites 2, 3, and 4 monitor the

runoff from strip mine spoils representing mining activity from

the l930s to the l940s, the l940s to the l950s, and the l960s

to the present , respectively. Runoff from these sites enters

the stream In the order given above. Site 5 is downstream from

the mine. Only 25 months of data were included in this study

since occasionally several features at a site were not

determined in certain months . At each site the data set was

composed of eleven features , pH, Cl , SO~~, Ca
24
, Fe

24
, K

F
,

Mg 2+
, Mn2+, Na

4
, Zn

24
, and HCO , all but pH reported in mg/i.

The final data set had approximately eight percent of its

values missing , which we filled in so as to minimize any

deviation from a particular site’s known data structure (113 .

Our goal was to establish a path model using all five

sites. Each site , represented by a data matrix of 11 features

sampled over 25 months , was used in the model as a separate
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entity. In our present case the path model is clearly that

shown as Model III in Figure 1. The only relationship possible

is that site 1, the upstream site, and sites 2, 3, and 4 mix to

form site 5, the downstream site .

In order to consider the effect of all features at once

the method forms latent variables,

N ,
~~~~

imi

at each site , where Nk is the number of features being

considered at site k, x is the value of feature I, and thek,1

ak 1
’s are coefficients determined in the course of the

analysis. The a
k i

’s for each of the upstream sites are

estimated from a multip le regression of all the features at a

particular site to the downstream latent variable, L5, as

diagramed in Model III of Figure 1. All coefficients a
k l  are

then scaled so that the latent variables L
k have unit variance.

Next , L5 is regressed upon the upstream latent variables to

estimate the Pk S ’S in the expression

4
L5 = ~~ 

Pk S Lk 
—

k—i

Using the Pk S S and Lk’S to estimate L5 we perform a multiple

regression of the features of site S on it in order to estimate
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the a
5 ~~~~~~~ 

. From the newly found a
5 

‘s we form a new
,i

L5 which is scaled to unit variance and the entire procedure is

repeated until all a
k and P~ 

~ 
converge . All calculations

were initiated with all a and P set to one. A similark,i k,5

series of path models can be developed to analyse any number of

blocks of variables connected by any set of paths.

Using all ii features in each block , the calculation of

Model III converged with an overall fit of 0.99. The squa r e of

2the f i t  co r re la t ion  coe f f i c i en t , R , gives the relative amount

of information at L
5 accounted for by the other four latent

variables and is calculated from

2
R 

~~~ 

Pk 5 Rk 5

where R.k S is the correlation between L.K and L
5. The site

contributions to R2 are given in Table 1. We note that the

good fit is primarily due to a strong relation between sites 4

and 5. The contributions of each individual feature to the fit

were calculated and showed tha t the high correlation was due

largely to a fit between HCO at site 4 and Ca2+ a-~d Mg
24 

at

site 5. Although only a small amoun t of the total variance in

all of the data is accounted for by this relationship, It is a

rather striking one as 11C0 introduc ed by site 4 strongly

buffers the Ca2~ and 115
24 concentration.



8

A princi pal component analysis of the features at site 5

yielded two readily Interpretable components. The first

compo nent represented  the major salt load Ca2+, flg
2+ Na+, K

4
,

SOY, and C1 on the creek and the second component

rep resented p r ima r il y the t rac e metals zinc and manganese .

Thus, a more directed analysis targeting on the p r i n c i pal

components  was suggested . Resul ts  of Model I I I  ca lcu la t ions

whe r e L 5 is represented by an individual princ ipal component

are also shown in Table 1. The first component is modeled by

the upstream values of site 1 and the first source of mine

drainage represented by site 2. These results indicate that

site 2 has by far the most dramatic effect on water quality.

Similar results were obtained for the second principal

component with an additional smaller contribution from site 4.

We have also performed Model III calculations when

L5 represents only one of the features from site 5, a non—

iterative calculation . An example using Cl is also shown in

Table 1. Though the concentrations of Cl and the other major

species at sites 2, 3, and 4 are comparable In magnitude [9),

drainage from site 2 is obviously the dominant influence on the

downstream Cl concentration. Drainage represented by site 4

also perturbs the downstream Cl concentration , most likely

because it represents flow from the newest spoils, which hav e a

greater concentration of the more solub le salts. The lack of



~
-

9

influe nce from site 3 shows tha t drainage by this site is not

d i f f e r e n t  eno ugh or large enoug h to a l t e r the Cl composi t ion

set at site 2.

From the ab ove it is clear tha t q u a n t i t a t i v e  est imates of

the e f f e c t  of st ream components c o n t r i b u t i n g  to the load at the

downs t ream site can be made. In addi t ion , deta i led i n f or m a t i o n

can be obtained on each component. For example , for many

species wh ich have a high conce n t r a t i o n  at an upstream site but

fail to be used in modelling the downstream site , we believe

some form of buffering or precip itation action may be taking

pla ce. In these cases the PLS anal ysis show whe re mo re

extensive investigation should be directed if the stream

chemistry is to be fully understood . Conclusions we have

arrived at using the PLS path modelling scheme are compatible

with those obtained in our laboratory using a battery of

sta ndard ‘tnult i varia te  techni ques on a mo re ex te n sive d a ta set

of which the present data  is a subset .

The above results show how PLS path modelling using latent

variables can provide insight into the interrelationships

between groups of features. It is especially important to note

tha t the treatment of groups of fea tures  as a unit  allows one

to include many more features in the analysis than would

normally be allowed by more conventional techniques when one is

confronted with limited quantities of data . In all the above
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calculations we have considered 44 features in sites 1 through

4 and obtained consistently interpretable results with only 25

sets of data. This form of analysis can be a powerful aid to

anyone confronted with blocks of features which are related to

one another along a set of logical paths.

This work was par t ia l ly  supported by the Office of Naval

Research .
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Fig . 1. Model I represents a multiple regression analysis of -

one mat r ix  onto a sing le f e a t u re , Mode l II depicts  two matr ices

of f e a t u res related to one another , and Model III shows the

partic ular multi—matrix path model dealt with through a partial

least squares analysis. In Model III the 4 matrIces on the

left represent sources of flow in a watershed which combine to -
~

form the flow represented by the fifth matrix . 
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Table 1. (Pk s )X(R k s ) values for sites 1

through 4 and the corresponding R
2 for

models where L5 is described in column 1.

PCs are principal components.

ii



Site 1 2 3

ii Features 0.02 —0.04 0.06 0.93 0.97

PC 1 0.35 0.69 —0.16 0.03 0.91

PC 2 0.21 0.59 0.00 0.11 0.91

Cl~~~ 0.09 0 . 5 8  — 0 . 0 8  0 . 29  0 . 8 8

_ _ _ _ _ _ _


